2D Material Nanowatt Threshold Lasing

Volker J. Sorger

1Department of Electrical and Computer Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC 20052

*Corresponding author: sorger@gwu.edu

Wu et al.\(^1\) demonstrate a 2D material-based laser only requiring 1 W/cm\(^2\) of pump power to reach threshold – a value low enough to be optically driven by a regular household light bulb! Reducing the power-level for the onset of the lasing action is a worthy goal in laser science. A series of design choices have lead to this breakthrough; 1) the 2D gain material exhibits high conversion efficiencies; 2) the laser cavity - a photonic crystal cavity (PCC) - has a high quality factor.

While choosing PCCs for miniaturized lasers is well established\(^2\), the significance of Wu’s work is to show lasing action with an atom-thin 2D gain material. Success was possible by careful photon management; the efficient built-up of a sufficiently-high photon density to enter the regime of stimulated emission as characterized by a high \(\beta\)-factor. The \(\beta\)=19% for the 2D laser\(^1\), while high, can actually approach unity for plasmon lasers\(^3\). Fundamentally, high photon utilization is possible when \(Q/V_{\text{cav}}\) is enhanced relating the cavity quality \((Q)\) with the effective cavity mode volume \((V_{\text{cav}})\) a value proportional to the so-called Purcell factor.\(^4\) While Wu followed the high-Q approach and keeping \(V_{\text{cav}}\) at the diffraction limit, high-Q devices bear technological challenges such as long photon lifetimes for direct modulation and high drive power since heating pads are often needed for resonance stabilization.

Key for a high-Q laser is to spatially and spectrally align the gain emitter to the feedback-providing cavity. 2D materials may offer advantages by providing deterministic cavity alignment and fabrication – a challenge for quantum-dot lasers still today. In addition, their permittivities are tunable via electrostatic doping and a wide selection of direct bandgaps are available. However, the modal overlap of the sub nanometer-thin 2D gain material with the PCC mode is rather low, and could be a reason for the low external conversion efficiency\(^1\).

The technological usefulness of on-chip lasers depends on both the device performance (i.e. deliverable light output, electrical drive power, stable room temperature operation) and the ease-of-integration (i.e. small footprint, efficient waveguide out-coupling, low cost). The functionality of 2D materials is not clear yet, since the nanoscale gain volume leads to tiny output levels, diffraction-limited PCC do not scale down in size, and the emission couples out vertically from the chip.

In conclusion, with demonstrated nanowatt thresholds the intriguing question arises: how low can we go? Enhancing the Purcell factor by increasing \(Q\) further is likely not an option due to broadening effects\(^5\). Alternatively, one can match \(V_{\text{cav}}\) with the length scale of the 2D material by deploying nano-optics approaches, provided losses are manageable. With the concept for 2D lasers achieved\(^1\), these light sources may play an important role in the looming flexible-electronics revolution.
Figure 1. A photonic crystal cavity provides strong feedback for the atom-thin WSe$_2$ gain layer.1 This demonstration indicates the potential for nanowatt-low threshold lasing enabled by the high-Q factor of the selected cavity, and efficient photon utilization (i.e. high Purcell factor). It is intriguing to ask what the ultimate lowest limit for a laser threshold is, and what technological role 2D material-based lasers might play in the near future.

References

